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RIGIDITY IN GLASSES AND PROTEINS

M. F. THORPE and LESLIE A. KUHN (East Lansing)

Abstract

We review recent progress in applying the theory of rigidity to glassy net-
works and to proteins. These three dimensional systems require a generalization
of Laman’s theorem, which we have used to develop a technique called the Pebble
Game which allows the rigid regions (containing both isostatic and overconstrained
parts) and the flexible joints between them, to be found. We show that a flexibility
index, which measures the local density of floppy modes, is useful in characterizing
the network. A sampling of recent results is given for network glasses, where we
show how the glass structure can self-organize to produce an intermediate phase
that is stress-free and contains a percolating isostatic cluster. In proteins, we show
how maps of the rigid regions and flexible joints, as well as maps of the flexibility
index, can help to elucidate the connection between structure and function.

1. Introduction

Atomic models of glasses, proteins, and other materials can be represented
by a network or graph of length constraints. These length constraints represent the
local geometry and chemistry by fixing covalent and hydrogen bond lengths and
bond angles, and by inhibiting dihedral angle rotations around double bonds. Our
goal is to determine the rigid regions and the flexible joints that separate them
in these networks [1-7], which can lead to a better understanding of the relation
between the structure and various observable physical properties.

Although no rigorous theorems exist for this specific combination of con-
straints in 3D, there is a rigorous theory for a slightly more generic set of bodies
with hinge constraints [3-5]. Moreover, Tay and Whiteley [2,7] have conjectured
(the Molecular Framework Conjecture) that this body and hinge theory does extend
to the less generic molecular models in which all bonds (hinges) of an atom pass
through a single central point of the atom. This conjecture, in turn, is precisely
equivalent to the Laman type counting assumptions built into our 3D pebble game.
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In studying hundreds of complex structures we have never found an excep-
tion to the applicability of these Laman type counts in 3-space for these molecular
structures, but a rigorous proof would be highly desirable [1-7].

We have used a bookkeeping device, the Pebble Game, for counting constraints
in the network that associates three pebbles with each atom and moves the peb-
bles around locally so as to balance degrees of freedom against constraints. This
procedure is an integer algorithm and is extremely fast: the rigid region decom-
position for a million-site (atom) network can be computed in a few seconds on a
personal computer. This algorithm scales linearly with the size of the system in
most situations, because the pebbles are usually redistributed locally.

Once the constraints are identified, the search for rigid regions and the inter-
vening flexible joints can begin. For small molecules, the rigid regions and flexible
joints can be found as follows. An unconstrained point (atom) has 3 degrees of
freedom in a 3-dimensional space. For the r atoms in an r-fold ring, there are 3r
degrees of freedom, which are reduced by the r covalent bond-length constraints in
the ring and by another r covalent bond-angle constraints. This leaves a residual
r degrees of freedom, of which 6 are the macroscopic rigid body motions involving
the whole molecule. Therefore, there are r — 6 internal bond-rotational degrees of
freedom, or floppy modes associated with a ring. These are zero-frequency contin-
uous deformations of the molecule consistent with the constraints and therefore do
not cost any energy. When r = 6, the number of floppy modes is zero, and the
region is said to be isostatically rigid. This ring has two realizations, the chair and
the boat, which are conformations with no continuous deformation path between
them. A transition between two realizations in such a rigid cluster will be referred
to as a flip. For r > 6, the ring is underconstrained, or flexible. Thus a seven-fold
ring has a single floppy mode that can be visualized as a rolling motion around the
perimeter, and we will refer to this type of motion as a roll. A five-fold ring has
one constraint more than is needed for rigidity, and so is overconstrained with one
redundant constraint, creating stress within the ring. The flexibility of each bond in
the ring can be quantified by a flexibility index, f = (r — 6)/r, giving the number of
floppy modes per bond within the ring. For an overconstrained ring, the flexibility
index will be negative, giving the number of redundant constraints per bond. Thus
the flexibility index represents the density of floppy modes (or redundant bonds)
within a region.

For interlocking rings and other complex, branched networks, it would be
extremely difficult to determine manually which constraints are independent. This
is because constraints on distant bonds may influence local rigidity if the bonds
are coupled through a ring or interconnected rings, and the bookkeeping for this
becomes very complex. However concepts from graph rigidity theory, using the
pebble game can be applied to count dependent and independent constraints in
macromolecules of the size and complexity of proteins. The techniques used for the
study of proteins are very similar to those used in glasses — the major change being
the necessity of also modeling hydrogen bonds in the network.

Rigidity in 3D is much more complex than in 2D, as it is much more non-
local in character. Ridid regions no longer consist of contiguous units and there



RIGIDITY IN GLASSES AND PROTEINS 243

is no three dimensional generalisation of Laman’s theorem for the general case.
However in this work we use the conjecture discussed earlier. We have considerable
confidence in this as our implementation, using the a Pebble Game based on it,
has internal consisitency checks that would fail if the conjecture were wrong, and
this has never happened. We can therefore proceed, while waiting for a rigoroius
matematical proof.

In this review we give examples of our work in glasses [10], where we show
that by eliminating stressed regions (overconstrained regions containing redundant
constraints), the glass undergoes two phase transitions. Initially there is a second
order phase transition from a floppy phase to a rigid but unstressed phase (with an
isostatic percolating backbone), and subsequently there is a first order transition to
a rigid and stressed phase (with an overconstrained percolating backbone).

For proteins, we show how this method can be applied to find biologically im-
portant flexible regions [11], using HIV protease as an example. A flexibility index,
calculated as the local density of floppy modes (deformations that are consistent
with the constraints), gives a useful quantitative measure of the magnitude of the
local flexibility.

2. Glasses

The study of the structure of network glasses has progressed steadily since the
initial work of Zachariasen [12] in 1932 that introduced the idea of the Continuous
Random Network (CRN). Zachariasen envisaged such networks maintaining local
chemical order, but by incorporating small structural distortions, having a topology
that is non-crystalline. This seminal idea has met some opposition over the years
from proponents of various microcrystalline models, but today is widely accepted,
mainly as a result of careful diffraction experiments from which the radial distribu-
tion function can be determined [10]. The CRN has been established as the basis
for most modern discussions of covalent glasses, and this has occurred because of
the interplay between diffraction experiments and model building. The early model
building involved networks with ~ 500 atoms constructed from a seed with free
boundaries in a roughly spherical shape [13]. Subsequent efforts have refined this
approach and made it less subjective by using a computer to make the decisions
and incorporating periodic boundary conditions. The best of these approaches was
introduced by Wooten, Winer and Weaire [14] and consists of restructuring a crys-
talline lattice with a designated large unit supercell, until the supercell becomes
amorphous. The large supercell contains typically ~ 5000 atoms. Both the hand-
built models and the Wooten, Winer and Weaire models are relaxed during the
building process using a potential. The final structure is rather insensitive to the
exact form of the potential and a Kirkwood [15] or Keating [16] potential is typically
used. Such models can be examined using the pebble game and some typical results
are shown in figure 1. These models have been very successful when compared with
experimental diffraction data on glasses [10].
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Fig. 1. Typical section of a random network with low mean coordination (2.37), where
rigidity has not percolated (left) and with a high mean coordination (2.40), where rigidity
has percolated (right). The wide black bonds are in overconstrained regions, while the
thin black bonds are isostatic. The hinge joints are shown as grey lines.

Despite this success in understanding the glass structure, some concerns re-
main. Perhaps the most serious of these is that the network cannot be truly ran-
dom. Even though bulk glasses form at high temperatures where entropic effects
are dominant, it is clearly not correct to ignore energy considerations that can favor
particular local structural arrangements over others. A simple example of this is lo-
cal chemical separation, where, for example, bonding between like atoms is favored
over bonding between unlike atoms. This can lead to chemical thresholds. A more
subtle effect of interest here is how the structure itself can incorporate non-random
features in order to minimize the free energy at the temperature of formation. This
is even more important in amorphous solids, which are usually formed at lower
temperatures, and so energy considerations are relatively more important and one
can expect more non-random local structural arrangements. Such subtle structural
correlations, which we refer to as self-organization [17), will almost certainly not
show up in diffraction experiments, but may have other manifestations.

A very simple approximation is due to Maxwell and we will refer to this as
Maxwell counting [10]. This involves a single global count, where the total number
of degrees of freedom is set equal to the number of constraints. This is clearly
not correct, but provides a very useful first approximation in networks that are
rather homogeneous. It is convenient to express the result in terms of the mean
coordination, which is defined as the mean number of nearest neighbors per site.
For networks where the sites have individual coordiantions of 2, 3 and 4, Maxwell
counting predicts that the mean coordination at the transition from floppy to rigid
is 2.4, and that the number of floppy modes is linear in the mean coordination,
going to zero at a value of 2.4 as shown in figure 2.
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Fig. 2. The number of floppy modes plotted against the mean coordination for Maxwell
counting (shown as a dashed line) with the associated mean field transition shown by the
open square at {r) = 2.4, and for a randomly diluted diamond lattice using a dot-dash
line, where the second order transition is indicated by the solid circle at (r) = 2.375. The
self-organized model follows the Maxwell curve, and is shown by a solid line, and gives a
second order transition at (r) = 2.375 (open circle) from a floppy to an unstressed rigid
state and a first order transition at (r) = 2.392 (open triangle) to a stressed rigid state.
The range of (r) over which the intermediate phase exists is indicated by the grey panel.

We focus on the mechanical properties and critical mechanical thresholds, as
this is where it is easiest to make theoretical progress at this time. How can such an
idea be developed theoretically? A proper procedure might be to use a very large
supercell containing ~ 5000 atoms and use a first principles approach, like that
of Car and Parrinello [18] to form the glass at the appropriate temperature. This
could possibly lead to self-organization of the kind discussed above; however this is
unlikely, in the same way that the superconducting state would be hard to find from
a brute force solution of the Schrodinger equation for a solid. We therefore need to
consider other ways of generating self-organized networks. One promising approach
is that of Barkema and Mousseau [19], who explore the energy landscape of a glass
by moving over saddle points to search for successively lower minima. We look at
even more simplified approaches that show what kinds of effects self-organization,
and the resulting non-randomness, can lead to.

The first of these approaches asks: what would happen to the properties of a
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Fig. 3. The fraction of sites in the rigid and stressed percolating clusters. Circles represent
the average over 4 networks with 64,000 sites, and triangles represent averages over 5
networks with 125,000 sites. The thicker dashed lines indicate a power law dependence
before and after the stress transition. Note the break in slope of the dashed line at the first
order transition at (r) = 2.392. The intermediate phase, which is rigid but unstressed,
exists for 2.375 < (r) < 2.392.

CRN if rings formed by bonds were eliminated as much as possible? Network models
can be built where the smallest ring is 10-membered, and this can dramatically alter
some properties of the network. In particular, the mechanical transition from a rigid
to a floppy network, which occurs as the mean coordination is reduced below 2.4,
seems to become first order rather than second order in character [10].

We also introduce a self-organized model of a random network in which config-
urations that are stressed are avoided if possible. This leads to two phase transitions
and an intermediate phase that is rigid but stress-free. Preliminary results show
that the phase transition at the lower mean coordination is second order and at
the upper mean coordination is probably first order. There has been some recent
evidence of a first order transition being seen in Raman scattering of chalcogenide
glasses as the composition is varied [20], and also some evidence for an intermediate
phase using differential scanning calorimetry [21]. These results are illustrated in
figure 2, where the intermediate phase is shown. In the region to the left, with low
mean coordination, the network is floppy, and to the right, at high mean coordi-
nation, the network is overconstrained, contains redundant bonds, and is therefore
stressed. In the narrow intermediate phase, the network is isostatically rigid and
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Fig. 4. Showing a piece of the peptide mainchain containing; comprising a backbone and
sidegroups which are then crosslinked to form the folded protein. Double lines represent
the peptide bond about which we do not allow dihedral angle rotation. Residues are
denoted by R.

therefore unstressed. This is further illustrated in figure 3, where the isostatic rigid
cluster and the stressed rigid cluster phases are shown.

3. Proteins

A new insight into modeling protein flexibility is that a protein structure can
be reduced to its essentials, and viewed as a mechanical system of points (atoms)
whose motion is limited by distance and angle constraints representing the inter-
atomic bonds, with no explicit interatomic potentials required. When applied to
the covalent and hydrogen-bond network of a single static protein structure, this
approach can predict the major biologically important rigid and flexible features
of proteins like HIV protease, which we use as an illustrative example here. We
have also applied this approach to many other proteins (including dihydrofolate
reductase, adenylate kinase, and a lysine-arginine-ornithine binding protein), and
obtained a similar quality of predictions of experimental observables.

Predicting flexibility in proteins has proven elusive. While normal modes
analysis [22] can extract the low frequency diffusive motion from molecular dynamics
(MD) simulations, in practice it is not possible to run these simulations with realistic
potentials for long enough (milliseconds) to sample the large-scale motions observed
by experimental techniques. This motion is essential for the biological function of
many proteins, such as the binding and processing of proteins required for HIV
replication [23]. Hence, the development of techniques for studying protein flexibility
remains an important outstanding problem.

Proteins are held together by several kinds of forces, of which the most im-
portant are the covalent forces that determine many bond lengths and angles, in-
cluding the dihedral angles associated with peptide bonds. In addition, hydrogen
bonds are responsible for forming the secondary structure of proteins, principally
alpha-helices and beta-sheets, and stabilizing the higher-order structures in which
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Fig. 5. A diagram showing a hydrogen bond inloving a donor and an acceptor atomtaken
here as an nitrogen and oxygen respectively. It is modeled as three generic distance
constraints, consisteing of a nearest neighbor central-force constraint shown as a thick
solid line, and two next nearest neighbor bond bending force constraints shown as dashed
lines. Each constrained hydrogen bond is also associated with three a priori rotatablke
angles indicated by the arrows.

helices and sheets fold together into the complex units responsible for the diverse
biological activity of proteins.

For modeling protein flexibility using a bond network or graph, the covalent
bond between two adjacent atoms, say C,—C in an amino acid, can be considered to
fix the distance between these two points, such that all motions remain consistent
with this constraint. An angular constraint, reflecting the bond angle specified
by the molecular orbital, is represented by a constraint between second neighbor
atoms, e.g., between the N and C neighbors tetrahedrally coordinated to a main-
chain C, atom. An additional constraint is introduced between third neighbor O
and H atoms in the O-C-N-H group, to prohibit any rotation around the C-N
peptide bond linking amino acids along the protein main chain. Such constraints
restrict the possible motions of the main and side chains, and have also been used in
molecular dynamics calculations [24,25] to reduce the number of dynamical degrees
of freedom. A wide range of hydrogen-bond strengths are found in proteins, with a
typical geometric criterion for their assignment [25] being a donor-acceptor distance
less than 3.5 A and a donor-H-acceptor angle greater than 120°. These hydrogen
bonds are included in the network used to represent the protein for the graph
theoretical analysis. The hydrogen-bond criteria can be made more stringent either
by decreasing the distance or increasing the angular threshold, resulting in only the
strongest hydrogen bonds being included.

As an illustration, the constraint-counting analysis is applied to identify the
flexible and rigid regions in HIV protease (HIVP), a major target for development
of inhibitory drugs for use in anti-AIDS therapy. The results (figure 6) show that
the protein is dominated by a single rigid cluster, including the base and walls of
the substrate and inhibitor binding site (cavity at center) and four flexible regions
(in each half of the dimer) shown as bonds in various grays (each gray indicating a
rigid micro-cluster within the flexible region). We will refer to the flexible regions
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Fig. 6. Rigid and flexible region decomposition for HIVP. Each rigid cluster appears as a
single color, including the dominant rigid cluster shown in black. Flexible regions appear
as alternating grey bonds, and include the ends (3) and bases (a) of the flaps that close
over the substrate, inhibitor, and drug binding site (cavity at center). Additional flexible
regions comprise the amino termini in the dimer interface at the bottom center (§) and in
the side regions (). Light grey lines join the donors and acceptors of hydrogen bonds in
this inhibitor-free form of HIVP (PDB entry lhhp).

as o, 3, v, and ¢ as shown in figures 6 and 7. The tips of the flaps (region S,
residues 45-56, top-center) are known from crystallographic and nuclear magnetic
resonance structures to be important for closing over and binding inhibitors [26],
and appear as the most flexible regions in this analysis of a single, inhibitor-free
structure (Protein Data Bank (PDB) entry lhhp). Other flexible regions include
the base of the flap (region «, residues 39-42), the termini of the protein chains
(region 6, residues 1-8) at bottom center, and the side region (region 1, residues
13-20 and region 2, residues 60-74), consisting of discontinuous segments of the
main chain (shown in figures 6 and 7).

Thus, significant insights can be gained into flexibility from the analysis of a
single protein conformation, in a few seconds of computational time and without
employing interatomic potentials. This increase in speed means that flexibility cal-
culations for large systems such as proteins, which were previously infeasible, can
now be done in real time. This new algorithm can be used to instantaneously assess
changes in protein flexibility due to natural or designed side-chain mutations, sub-
strate or inhibitor binding, and interactions with other molecules, including crystal
lattice neighbors and solvent molecules. Using this approach, information about
protein flexibility can be extracted from a single snapshot of the protein structure,
which can aid in drug design as well as our understanding of protein folding.
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Rigid Flexible

Fig. 7. The flexibility index is shown as a grey scale on the main-chain ribbon of the same
HIVP structure shown in figure 6. The light regions are the most floppy (high flexibility)
and the dark regions are the most rigid (high stability).

4. Conclusions

The work described here is a brief review of recent applications of rigidity
theory to glasses and proteins. Further details can be found in the references cited,
particularly the book containing references [10] and [11].
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